
The ALEGRA FEM Code
Overview and Thoughts on Fault Tolerance

June 7, 2002

Richard Drake, SNL

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

ALEGRA Usage
Relevance & Impact

Developing the physics foundation
and solution methods required to
simulate:

• NG Power Supply, Fireset, & Contact
Fuse Performance

• Weapon Response to Blast & Impact
• Coupled Lagrangian/Eulerian earth

penetrator Modeling
• Z-Pinch & ICF Phenomena for AGEX
• Architectural Surety

Features
• 2D and 3D
• Unstructured Finite Element Mesh
• Object-Oriented
• Massively Parallel
• Multi-material ALE (Arbitrary-Lagrangian-

Eulerian)
• H-Adaptive (mesh element refinement)
• Coupled Physics

• Solid Dynamics
• Resistive MHD
• Radiation Transport
• Electromechanics
• Full-wave Electromagnetics

NEVADA Framework
Provides the necessary services and code structure to allow rapid physics
algorithm development.

• Language is C++ but C and FORTRAN are also used.
• Services include I/O, structured & unstructured mesh topologies and

variable data storage, parallel communication mechanisms, and
automated regression testing.

• Physics modules use C++ inheritance to couple algorithms.
• Current work on multi-domain physics algorithms & interactions.

Hydrodynamics Conduction

HydroCon

Physics (contains the mesh &
supplies variable registration)

ALEGRA FEM Physics Hierarchy
Region

Unstructured_Region Structured_RegionRegion_Controller

…

Uns_Hydrodynamics

…

Str_Hydrodynamics

Uns_Hydrodynamics

Str_Hydrodynamics

Flow of Execution

main
• Init MPI
• Register handlers
• Parse input data

• Initialize

• Restart

Run Step
• Output data (periodically)
• Output restart (periodically)
• Synchronize global data

Apply physics
• Loop code
• Ghost object updates
• Specialty algorithms

Create objects

Framework Communication

• All MPI calls under control of the framework are wrapped
• At this time, MPI_COMM_WORLD is the only communicator in use
• Most communications are reductions & point-to-point with a few local

processors

• Colors represent processor rank
• A processor must communicate

using point-to-point messaging with
any other processor it touches

Framework Communication

(0:14)

(0:15)

(0:16)

(0:17)

(0:10)

(0:11)

(0:12)

(0:13)

(1:21)

(1:22)

(1:23)

(1:24)

[0:20]

[0:21]

[0:22]

[1:23]

[1:24]

[1:25]

Processor 0 Processor 1 Processor 2

Vertex HID

Element HID

(1:34)

(1:35)

(1:36)

(1:37)

(1:30)

(1:31)

(1:32)

(1:33)

(2:41)

(2:42)

(2:43)

(2:44)

[1:50]

[1:51]

[1:52]

[2:33]

[2:34]

[2:35]

Framework Communication

RegionRegion

Processor_Set
MeshIPC

Region

MeshIPC

Processor_SetProcessor_Set
MeshIPC MeshIPC

Processor 0 Processor 1 Processor 2

Framework Communication

1. Post non-blocking receives for all
MeshIPC’s (recvBuffers
attached).

2. Collect data from TopoEntity
objects into sendBuffer.

3. Complete blocking sends for all
MeshIPC’s.

4. Wait until all receives are
complete.

5. Move data from recvBuffers into
TopoEntity storage.

recvBuffer

MeshIPC

recvBuffer

MeshIPC

MeshIPC::sendBuffer

Processor_Set

Framework Communication

recvBuffer

MeshIPC

recvBuffer

MeshIPC

MeshIPC::sendBuffer

Processor_Set

recvBuffer

MeshIPC

MeshIPC::sendBuffer

Processor_Set

recvBuffer

MeshIPC

MeshIPC::sendBuffer

Processor_Set

TopoEntityTopoEntity

TopoEntity TopoEntity

Ghosts

GhostsGhosts

Ghosts

1. Data is moved to
sendBuffer from
local TopoEntites
via Write_Buffer_Data()

2. Data is moved from
recvBuffer to
ghost TopoEntites
via Read_Buffer_Data()

On processor 0

On processor 1

On processor 2

Adaptivity & Dynamic Load Balancing

parent childrenh/2h

Machinery

Ghost layer difficult

Processor 1

Processor 0

Processor 0 Processor 1

Adaptivity & Dynamic Load Balancing

Without load balancing
• 100 cycles
• Elapsed wall time = 1:54m

With load balancing
• 100 cycles
• Elapsed wall time = 1:40m
• Rebalance cycle interval = 30

Note:
• 100 cycles
• Rebalance cycle interval = 1
• time = 4:09m

• The ZOLTAN library is used as a black box decomposition tool
• Mesh movement & reconstruction is relatively expensive

Some ALEGRA Statistics
• Usage:

• Big: 40 million elements, 2000 processors on ASCI Red (Janus), 1
hour wall clock time, electric field calculation

• Average big: 1-3 million elements, 100-300 processors, 12 hours to 2
weeks of wall clock time

• Restart sizes: (single node has 256 MB RAM ~ 200 MB available)
• 10K elmts of MHD = 7 MB
• 10K elmts of Hydro w/ contact = 3 MB
• 150 elmts of solid dynamics = 0.2 MB

• Communication:
• Lagrangian, 3K elmts, 6 procs:

= 20 global & 10 P2P per step
860KB max P2P size

• Eularian, 8K elmts, 8 procs:
= 54 global & 175 P2P per step

613KB max P2P size

restart size
core size • 5%

Fault Tolerance in ALEGRA/NEVADA

Required features:
• Check-pointing
• Synchronized recovery

Required enhancements:
• Improve destruction/construction of high level objects
• Remove use of MPI_COMM_WORLD
• Rewrite communications to exclusively use communicators

Desired enhancements:
• Modify restarts to allow reading & writing to RAM
• Move to 3rd party libraries that use communicators (urge existing 3rd

party libraries to use communicators)

Recovery Strategy for Lost Node

1. A compute node crashes or
becomes disabled

2. User code detects an error and
jumps to a rendezvous point

3. Recovery sequence begun
4. Health of process group

determined
5. Lost node & associated info

determined
6. Signal sent to all processes to

synchronize at a restart location
7. Replacement node spawned

and synchronized
8. Restart files read and

application continues

rendezvous

start restart

rendezvous

user code
w/ communication

main

recovery

recovery

2.

6.

with periodic
restarts

Detection & Synchronization

Detection at the application level:
• Signals (including timeouts)
• Active probing
• MPI return values & MPI error handlers

Synchronization at the application level:
• Signals & setjmp/longjmp’s
• “Out-of-band” message passing
• Special MPI communicator

Restart strategies:
• File restarts written & read
• RAM restarts written & read

• Buddy system
• Each process stores a fixed number of restarts from other processes
• Dedicated restart storage processes

Reliability in LAM/MPI
• Requirements Specification draft Oct, 2001
• Jeffrey Squires, Brian Barrett, & Andrew Lumsdaine
• Failure scenarios:

• Complete failure of a node
• Node becomes disconnected from network
• User application failure

• Programming Models:
• Asynchronous failure notices: registered callback functions triggered

when the MPI layer is notified of a remote process
• MPI function failures: collective calls on wounded communicators &

point-to-point communications with failed remote processes
• Extension of MPI function semantics: MPI_COMM_FREE &

MPI_COMM_SPLIT must allow operation on wounded communicators
• Application requirements: invoke “reliable” MPI mode, register error

handler, use MPI_COMM_SPLIT to create healthy communicators, check
result codes of all MPI operations

Comments

• Lot of work to get ALGRA/NEVADA to be fault tolerant
• The MPI layer is what is visible to the application but is

only available in limited fault tolerant form
• The LAM/MPI programming model seems promising for

application developers
• Additional complications introduced with batch & queue

platforms when MPI_COMM_SPAWN is needed

